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INTRODUCTION 

Heat conduction is the most important mechanism for ther- 
mal energy transportation in solid objects. The successful 
progress in applied and theoretical mathematics about the 
initial-boundary value problems of a general parabolic sys- 
tem [l] has solidified the fundamental knowledge in finding 
solutions for specified engineering problems. In early times, 
when the computational capability was not so powerful as 
today, a large amount of effort had to be devoted to finding 
analytical solutions in applicable forms following very strict 
mathematical disciplnes. Nowadays, superior computer 
capacities and contemporary numerical techniques have 
become available for numerically solving heat conduction 
problems described by parabolic equations, while the classi- 
cal way has largely been ignored. Theoretical research in the 
heat transfer field, regarding both conduction and convec- 
tion, is mainly by numsarical simulations. However, the classi- 
cal way for finding analytical solutions is obviously still 
important for verifying numerical solutions which are less 
strict than formerly. A. numerical solution must be shown to 
be acceptable based ton the combination of the following 
three criteria [2] : 

1. estimates of computing error bounds ; 
2. comparisons with analytical solutions ; 
3. substituting the results into the original equations. 

The experimental data. are useful to assess the mathematical 
models, but are never sufficient to verify the numerical solu- 
tions of the established mathematical models. Comparisons 
between the numerical calculations and the experimental 
data fail to reveal the compensation of modelling deficiencies 
through computing errors or unconscious approximations in 
establishing applicable numerical schemes. Moreover, ana- 
lytical solutions for some specified problems are also essential 
for the development of efficient applied numerical simulation 
tools. 

The present paper discusses a practical method to derive 
a closed form of the exact solution for transient heat con- 
duction in hollow cylinders containing well-stirred fluid with 
uniform heat sink (or source). The physical problem is 
depicted graphically b$ Fig. 1 and mathematically by 

= h,(Tw(r,, 4 - T,(t)) 
r = I, 

WG$ = kA(Tdr,, t)-TdO-q,h 

with Initial Conditions (ICs) : 
T&,0) = T,(O) = T,,. 

(1) 

In the above equation, Co,! is used without losing generality, 
which implies a procesf with a constant volume. The above 
equation is still valid in a process at constant pressure, but 
C,,r instead of CU:r should be employed. 

Although this is an old heat conduction problem, in which 
the solid walls are in contact with the well-stirred fluid, the 
only solutions that the author could find in open literature 
are always addressed using the assumption (e.g. [9) : 

T,(t) = T&t, t), t 3 0. (2) 
The early achievements related to heat conduction in solids 

were largely encompassed in the famous textbook written by 
Carslaw and Jaeger [4]. Van Sant [5] later also assembled a 
collection of conduction heat transfer solutions that he had 
found in numerous publications. However, the solution for 
the more general case shown in equation (1) has not yet been 
found. The present study derives a solution for such a specific 
problem by applying the Laplace transform method. 

SOLUTION PROCEDURE 

For simplicity in processing solutions with the Laplace 
transform method, equation (1) is modified into the fol- 

Fig. 1. A typical hollow cylinder containing well-stirred fluid 
with uniform heat sink. 
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NOMENCLATURE 
A heat transfer area [m2] T temperature [K] 
a thermal diffusivity [m’ s- ‘1 t time [s] 
C” specific heat at constant volume Vr volume of the contained fluid [m3] 

[J kg-’ K-‘1 Y,, Y, the zero and first-order second-type Bessel 
h, heat transfer coefficient [w m-’ Km ‘1 functions. 
&l>z, the zero and first-order modified Bessel 

functions Greek symbols 
J,,, J, the zero and first-order Bessel 2, heat conductivity of the wall 

functions w m-’ K-’ 1 
Ko, K, the zero and first-order second-type P density [kg me3]. 

modified Bessel functions 
Mr mass of the contained fluid [kg] Subscripts and superscripts 
4V volumetric heat sink [w m-‘1 fluid 
r radial position in the cylindrical wall, f Laplace-transform of functionf 

ri < r < rO [ml wall 
s Laplace variable [SF’] l;r initial value. 

lowing standard zero initial-boundary value form as : By eliminating ti and t?(r,, s) with the combination of equa- 
tions (S), (8) and the boundary condition at r = r, in equation 
(3) in terms of Laplace transforms, one obtains : 

A!& 
“ar,=, = kv(u(r,, 4 -w(t)) 

with ICs : 

dw h,A 
5 = M,c,, [u(r,, 0 - w(t)1 

4” vr 
+ M,G,, (3) 

u(r, 0) = w(0) = 0 

where U, w, the excess temperatures for both the cylindrical 
wall and the contained fluid, are defined as below, respec- 
tively : 

u(r, t) = To - T,(r, t) 

and 

w(t) = TO-T,(r). 

The Laplace transform for w in equation (3) yields 

By substituting equation (9) into equation (8) and rearrang- 

(4) ing terms in order to process an inverse Laplace transform, 
one has 

and the Laplace transform for u in equation (3) leads to : 

fi(r, 4 = 8 I (4 * ii2 (r, 4 

p,@)=- fg L ( ) f s2 

which is subject to the solution of I? as : 

(6) 
O2 (r, s) = 

&&G (&&M&‘&) + 
11 (fir&G (fir)1 (10) 

(7) where (~,/a)(S+5;‘)~t(S)--hwJSla~z(S) 

The adiabatic boundary condition at r = r. in equation (3) 
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(11) 

According to the rule of Laplace transforms (e.g. [6]), one 
has : 

If LCf(t)) = 4, (s) -&(s) and the inverse Laplace transform 
g,(t) and g2(t) are known as gl(t) = L-‘@,(s)) and 
g*(t) = L-‘&(s)), then the inverse Laplace transformf(t) 
is defined by : 

.I-(0 = 
s 
‘9, (f-+g2(4 dr. (12) 
II 

In our special case J,(s) and i2(r, s) are shown in equation 
(10). The inverse Laplace transforms for both Q,(S) and 
&(r, s) are found to be : 

g,(‘) =: - f$ ( > f f 
g2 (r, t) = & 

S’ 
+Im exp (st) *&(I, s) ds 

y-Kc 

= 1 Res,(exp (st)&(r, s)). (13) 

Equation (10) for iZ(r, s) can be simplified as follows with 
the variable definition q = &: 

Q2 (r, s) = & (r, 4) = 

qK (qr& (qr) +ZI krdfG(qr)l 
@w/4 (et + c ’ I$, (4 -k&z (4 

c14j 

To find the residuals of the integrant depicted in equation 
(13), one needs to search all pole singulars of the above 
equation, corresponding to all zero points of its deter- 
mination. Therefore, these singulars can be specified by the 
roots of the following transcendent characteristic equation : 

A(q) = $ aq’+i 
(. ) 

G,(q)-kv&(d = 0. (15) 

The roots of the absave equation are real and can be deter- 
mined by transforming into the real domain with 

s := -a/j’ or q = iB. (16) 

Then by using Wronskian recurrence relations 171, one 
obtains 

-.MBr,)Yl (pro)) = 0. (17) 

The above equation leads to 

According to the complex analysis theory and Laurant series, 
if qn = i/3. are simple singulars, which should holds true in 
our special case, the:n 

Res, (exp (s.Gh (r, s,J) = 

+ZI (qdK&r)), ( l g )  

The definition of q implies : 
dA dA dq 1 dA _=-_=__ 
ds dq ds 2aq dq (20) 

Again, by applying Wronskian recurrence relations [7] to 
transform Bessel functions from the comnlex domain to the 
real domain, one obtains : 

JV) = 2 = 2 (Y, WJJ, (P0) -JI (BrJ K (Pro)) 

-5 VI (Br&dPrJ -JI (Brd YdBrJ) 

+~~~(pr,)y~(Br,)-Jo(B~.)Y~(Br~) 

+ [Y, Wo)Jo(BrJ - YO(Bri)J1 (Bro)l’ 
VI WJJ, Wd -4 WJ Y, W-d ) 

(21) 

and 

qK (qr&&r) + 1, (cl~dfG(qr)l 

= -~[Y,(~r~)J,(pr)-J,(/lr.)Y~(Br)l. (22) 

Finally, by substituting the above equation into equation 
(13)) one arrives at 

g2(r, t) = C Res.(exp (s.08, (r, 3,)) 
n 

- YI W0MB.r)) exp (-420. (23) 

According to the rule of the inverse Laplace transform, we 
obtain 

u(r,t) = = c 4.v, 
..( A$%!) 

1 -exp(-ap,Zt) 

Q’B.’ 
). (24) 

By converting u(r, t) back to T,(r, t) with equation (4) and 
writing it into a dimensionless form, one has 

t l-exp(-a/?.2r) 

+? a’t% 
)- (25) 

By further integrating the equation for w(t) in equation (3) 
and coupling with the solution for u(r, t). one gets 
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w(t)= (gpexp(-;)I 

+; (%)(&I) 
x (Jo (B.rJ Yl (B.r,) - Yo(B.ri)Jl (B.rd) 

x [jl+(7f+-$exp(;$f)-l 
exp ( - &t) - exp ( - t/rr) _ 1 a’p:(ap;zf- 1) 

(26) 
Similarly, the dimensionless form of the fluid temperature 
can be written as, 

exp ( - up.’ t) - exp ( - t/z,) _ 1 a*8:(a/?;rr- 1) 
(27) 

Equations (25) and (27) are the solutions of the problem 
discussed here for the wall and the fluid respectively. Because 
the characteristics of all types of Bessel functions have been 
elaborately investigated and all functions can be precisely 
evaluated from the existing mathematical establishment (e.g. 
[7]), the applications of the solutions shown in equations 
(25) and (27) can be easily manipulated. 

5-r 

CONCLUSION 

A closed form of the analytical solution for transient heat 
conduction in hollow cylinders containing well-stirred fluid 
with uniform heat sink is found using Laplace transform 
methodology. The solution is also valid for the case of con- 
taining a well-stirred fluid with uniform heat source by chan- 
ging qt into -qL. The practices used in the present study 
are also applicables with minor modifications, to similar 
problems with more general boundary conditions. It is 
expected that the present study will be useful for enlarging 
the fundamental mathematical knowledge base of transient 
heat conduction, and for possible applications in some engin- 
eering fields, such as micro-heat pipes, liquid metal cooling 
systems and vessel protection, etc. 
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Fig. Bl. Calculation for A. 
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APPENDIX A, : WANSKIAN RECURRENCE 
RELATIONS 

z&(z) +vl,(z) = Zl”_, (4, 
z&(z) -vZ,(z) = ZZ”, , (z) 

zK:(z)+vK,(z) = -S_,(z), 

zK:(z) - UK,(Z) = - rK,+, (z) 

z&(z) + d,(z) = ZJ”.. 1 (z), 

zJ:.(z)-vJ,(z) = -z.J,+,(z) 

Z;(z) = Z,(z), Kb(z) = -K,(z) 

J;(z) = -J1(z). Y;(z) = -Y,(z) 

Jo(z) Y:(z) - Y&)J:(z) = ; 

&,(z)K;(z) -K,(z)Z;,(i:) = - ; 

~,(z)K,+t(z)+K,(z)~,+t(z) =; 

J, (z em”‘) = emuxi JO (z) , 

Uze *l/zni) = e*“Zu”J,(z) 

K,(ze”/2m) = ~~xier’i2Yni[-J0(z)~iY,(z)] 

Y, (z em”‘) = e m”n’ Y,(z) + 2i sin (mun) cot (vn)J,(z) 

APPENDIX 6 : EXAMPLES TO CALCULATE 
ROOTS p. OF EQUATION 117) 

Y. (Pi) Jl (Pro) -Jo @‘rJ Y, (Pro) 
F1 (‘) = 6 (Pri)JI (Pro) - J, W-J Y, (b-d 

If Ft (8) = F2(B), then B = 8.. 
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INTRODUCTION 

Thermal managemem is becoming a predominant con- 
sideration in the design of IC chips and their packaging. The 
electrical behavior of devices and their reliability are strongly 
dependent both on the temperature of chip and temperature 
difference among the components. Many researchers pay 
their attention to the failure resulting from an overhigh chip 
temperature, which is always associated with irreversible 
mechanical fracture as well as loss of electrical functions. In 
contrast our efforts have concentrated on the analysis of the 
thermal failure arising from temperature difference among 
the components related to critical electrical paths. For a high- 
speed system, the component’s performance is sensitive to 
the temperature difference between them because of the prob- 
lem of signal skew, and so, the junction temperatures of 
various components should be kept within a specified range 
for a high performance system. For most chips, 0.25”C may 
be the maximum allowable value. 

When a thermal analysis was applied to the chip at the 
component level, the following Fourier’s heat conduction 
equation was usually used 

q = -Kg. 

However this equation is based on the diffusion mechanism 
and implies a presumption of infinite thermal propagation 

speed not applicable for a rapid wave heat transient process. 
Alternatively, the C-V heat conduction equation, originally 
proposed from Maxwell equation [1] and then modified by 
Cattaneo and Vernotte [24], can be used for the description 
of such a rapid heat conduction 

a4 aT 
z---q= -KG at (2) 

where z, defined as t = a/c*, is the relaxation time and ex- 
plained as the build-up period of the commencement of 
heat flow after a temperature gradient is imposed on the 
medium; c, the thermal wave propagation speed and a, 
the thermal diffusivity of the medium. 

Comparing the C-V equation (2) with the telegram equa- 
tion 

L ai 1 aE 
gz+i= -RZ (3) 

we have the complete analogy between heat transfer and 
electrical current transmission as listed in Table 1. In elec- 
trical analogy, the term z/K in equation (2) is equivalent to 
the electrical inductance L. The relaxation term can not be 
neglected in strongly transient process as that the electrical 
inductance can not be ignored for an rapid alternating cur- 
rent circuit. This is known as thermal wave phenomena. 

Several features of high speed IC chip make it important 


